let the quadratic eq ax^2 +bx + c be such that a,b,c are distinct and each of a,b,c belong to {1,2,3.....n} such that x+1 divides ax^2+ bx +c.If such quad.polynomials are < 99,then max(n)=?

a)14Â b)15Â Â c)16Â Â d)18Â Â e)noneÂ of these

Got it. thanks alotÂ ðŸ™‚

The area enclosed by**Â **f(x) = min {4-x, 4+x} and g(x) = max {-x, x-4} equals

Â

Â

8

12

16

24

A quadratic function attains minimum value of â€“25 at x = 1. If f(0) = â€“24, what is the value of f(6)?

Â

Â

0

If a=âˆš(7+4âˆš3), what will be the value of a+1/a?

If roots of equation (a^2+b^2)x^2-2b(a+c)x+b^2+c^2=0 are equal then a,Â b, c are in

A) AP

B) GP

C) HP

D) cannot be determinedÂ

Solve the inequality

3x^2-7x-6<0

Â

3x^{2} â€“ 7x â€“ 6 < 0.

3x^{2} â€“ 9x - 2x â€“ 6 < 0.

3x ( 3x -2) -2( x-3) < 0.

( 3x â€“ 2) ( x-3) <0

Â Â Â Â Â Â Â Â Â 2/3Â Â Â Â Â Â Â Â Â Â Â 3

___+ve____|_____-ve _____|____+ve___

2/3 < x < 3Â

(7/2+a)Â²+(7/2+a+x)Â²=7Â²-----(1)

(7/2+a-x)Â²+aÂ²=(7/2)Â²-----(2)

Find values of a and x ?