Quant Question Of The Day: 272
Logarithm
Find the greatest integer b for which logb(192!) – logb(191!)- logb(24) is an integer.
See our previous ‘Questions of the Day’:
Quant Question Of The Day: 271
Quant Question Of The Day: 270
Find the greatest integer b for which logb(192!) – logb(191!)- logb(24) is an integer.
See our previous ‘Questions of the Day’:
Quant Question Of The Day: 271
Quant Question Of The Day: 270
Using the property logb(x) – logb(y) = logb(x/y) ,
logb(192!) – logb(191!)= logb(192!) and logb(192) – logb(24) = logb(192/24) = logb(8). Therefore , the gretest value of b for which logb(8) is an intger is b = 8.
New Question: Coordinate Geometry
good information
By Những dòng bồn cầu thông minh ... , 6 months ago
B = 8