Quant Question Of The Day: 44
[latexpage]
Algebra
x, y & z are positive real numbers , if xyz(x+y+z)=1. Find the minimum value of (x+y)(y+z).
[latexpage]
x, y & z are positive real numbers , if xyz(x+y+z)=1. Find the minimum value of (x+y)(y+z).
( x + y) ( y + z) = xy + xz + y² + yz
= xz + y ( x + y + z ) = xz + 1/xz
So, ( x +y) ( y + z) => xz + 1/xz ≥ 2√(xz × 1/xz)
≥ 2.
New Question: Coordinate Geometry
good information
By Những dòng bồn cầu thông minh ... , 6 months ago
12 ?